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Abstract. The present article reviews some recent developments in nonlinear elastic membrane theory with special 
emphasis on axisymmetric deformation of flat circular and annular membranes subjected to a vertical surface load 
and with prescribed radial stresses or radial displacements at the edges. The nonlinear F6ppl membrane theory of 
small finite deflections as well as a simplified version of Reissner's finite-rotation theory is employed, assuming 
linear stress-strain relations. The main analytical techniques are reported which have been applied recently in order 
to determine the ranges of those boundary parameters for which solutions of the relevant nonlinear boundary value 
problems exist, and ranges of parameters for which the principal stresses are nonnegative everywhere. Concerning 
plane membranes, it is shown how the mathematical theory of existence and uniqueness was nearly completed in 
recent works in contrast to curved membranes where references can be given to rather few results. 

I.  Introduct ion  

In the linear theory of elastic membranes and thin shells, the deformation at any given place 
of the body is proportional to the magnitude of the applied load. As in three-dimensional 

elasticity, the load must be sufficiently small for linear membrane or shell theory to be 
applicable; otherwise a nonlinear theory is required. If the strain-displacement relations are 

nonlinear, but linear stress-strain relations are adequate, we have a geometrically nonlinear 
theory. When the latter relations are also nonlinear, one deals with a physically nonlinear 

theory. Many conventional materials for engineering thin shell and membrane designs are 
linearly elastic for small strain so that linear stress-strain relations are appropriate. Thus for 

sufficiently thin structures there is good reason to formulate geometrically nonlinear theories 

assuming finite deflections (rotations) but small strains, and to investigate the solution 

structure of the basic boundary value problems. This is the purpose of the present review, 

where we restrict ourselves to the class of problems described by nonlinear membrane 
theories, For simplicity, we only consider membranes of revolution under axisymmetric loads 
(aximembranes), Recently, materially nonlinear deformation has been studied for rubber- 

like membranes,  but this topic is beyond the scope of this paper. 
In 1859, Kirchhoff first proposed a nonlinear plate theory [28] which was reduced by von 

Kfirmfin to a set of two simultaneous eqUations for the normal displacement w and a stress 
function f [26]. Somewhat earlier, A. F6ppl had derived a nonlinear theory for flat 

membranes  [13]. These are all geometrically nonlinear theories for small finite deflections, 

that is, the displacement components u and v tangential to the plane of the membrane or 
plate are assumed small compared to the normal displacement w; furthermore, only 
quadratic terms in w and in the change of angles of rotation are retained. 

The yon Kfirmfin equations have been studied extensively by both mathematicians 1 and 
engineers because their simple structure makes them amenable to both theoretical and 

1 For a recent survey see P.G. Ciarlet [7]. 
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numerical analysis. In cartesian coordinates, these equations are 

1 
DA2w - [f, w] = p(x ,  y ) ,  AA2f  + -~ [w, w] = O, (1.1) 

where D and A are elasticity constants, f the Airy stress function, p is the surface load 
normal to the (undeformed) plate, A 2 is the biharmonic operator  and [f, g] =fxxgyy + 
f y y g x x -  2fxygxy" The F6ppl membrane equations [13] are obtained by setting the flexural 
rigidity D equal to zero in (1.1). 

In 1938, a nonlinear theory of shallow shells was given by Marguerre [31], a few years 
after Donnell  [12] had derived a nonlinear theory for circular cylindrical shells to investigate 
certain buckling problems. Again these papers are restricted to a nonlinear theory with small 
finite deflections. The Marguerre equations are 

Om2w -- [Z, f l  -- [W, f] = p(x ,  y) , 

1 
ZA2f  + [Z, w] + ~ [W, W] = O, 

(1.2) 

where z(x,  y) represents the (undeformed) shape of the middle surface. Due to the presence 
of the (linear) curvature terms [z, f ]  and [z, w], the solution structure of (1.2) changes 
drastically from that of (1.1), including, in particular, buckling under normal pressure. 

In a related development,  the need for a stress analysis of thin infatable sheets led 
Bromberg  and Stoker to develop a geometrically nonlinear theory for aximembranes [5]. 

The first geometrically nonlinear shell theory not restricted to small finite deflections was 
given by E. Reissner [37]. This work concerns axisymmetric bending and stretching of shells 
of revolution (axishells). The basic equilibrium and compatibility equations and stress-strain 
relations were reduced essentially to a system of two coupled second order  ordinary 
differential equations for the meridional angle of rotation ~ and a stress function F. Various 
simplifications of the system derived in [37] have been proposed in recent years. One by 
Reissner [38], others by Koiter [29] and by Libai and Simmonds [30]. Some of these 
simplifications are parallel to the linear theory, as far as neglecting terms involving Poisson's 
ratio v is concerned,  others are obtained by neglecting O(e) terms compared to unity, where 
e is a measure for the strain in the shell. The simplified Reissner equations [30] can be 
written in the form 

1 c o s ~ +  1 r ( ~  - q0" + (alp - q~)' cos q~ = r ~ (F  sin qb - rV cos ~ ) ,  

(1.3) 
1 1 

- - F = (cos • - cos q~) + (rZp~/) ' + vrps. rF" + F'  cos q~ r 

In cylindrical coordinates (r, 0, z) the parametric representation of the surface of revolution 
is taken in the form r = r(s), z = z(s),  where s is the arclength along a meridian of the 
surface. Primes denote differentiation with respect to s. Thus we have r ' =  cos q~ and 
z '  = sin q~, where q~ is the angle made by the meridional tangent with the base plane of the 
surface of revolution. The components of the surface load p are denoted by appropriate 
subscripts ( H =  horizontal, V=  vertical; s, n meridional and normal to the deformed 
surface). We note the relations 

pu  -- p~ cos qb + p~ sin qb, Pv = P~ sin qb - p~ cos • ,  (1.4) 
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F =  rR, R and V are the radial (horizontal) and axial stress resultants, respectively. 
Depending on the type of loading, the effect of the Poisson's ratio term in (1.3) may be 
significant for moderate to large values of the load. In (1.3) meridionally uniform shell 
properties have been assumed (constant thickness, isotropy and homogeneity of the 
material). 

In order to solve the differential equations (1.3), boundary conditions consistent with the 
small strain assumption must be formulated. In many cases of practical interest, these 
boundary conditions are nonlinear, for example, if the horizontal displacement u is pre- 
scribed at the edge. In terms of • and F, one has 

u = rA[F'  + rpH - u(r-~F cos • + V sin ~ ) ] .  (1.5) 

Very thin shells have negligible bending stiffness. Therefore, an important special case is 
nonlinear membrane theory, which is obtained from (1.3) by setting D = 0, which yields 
rV cos qb = F s in~ .  Substituting this into the second equation of (1.3) we find the basic 
equation for geometrically nonlinear aximembranes 

/ F } 
(rF') '  - r -~ IF z + (rV)2]l/2 - cos q~ + (r2pn) ' + urps. (1.6) 

The equations of the approximate small finite deflection theory can now be obtained as 
follows. Introducing/3 = q ~ -  ~ ,  one may write c o s ~  = cos q~ +/3 sin q~- ½/32 cos q~ + - - -  
and a similar expansion for sin qb. Retaining only terms up to the second degree in/3 and F in 
equations (1.3), we get the equations of small finite deflection theory. It is a simple exercise 
to transform equations (1.2) to cylindrical coordinates. Set z =  z(r),  w =  w(r), f = f ( r )  
(axishells) and integrate the resulting equations twice with respect to r. The result will be the 
small finite deflection version of equations (1.3) for shallow shells of revolution. The small 

finite deflection membrane equation can be obtained directly from (1.6) by expanding the 
square root and retaining only quadratic terms. What comes out is a generalization of the 
F6ppI membrane theory to curved membranes: 

1[ l(rV  l 
( r F ' ) ' - r  ~- 1 - c o s ~ o - ~  F /  I +( r2pu) '  + v r p ' "  (1.7) 

For the special case of a plane membrane z -- q~ = 0 under vertical load Pn = Ps = 0, we get 

I(rV   
(rF') '  - r 2 A  F / " (1.8) 

This review paper is organized as follows. The mathematical theory for the boundary value 
problems of plane membranes is nearly complete, while for curved membranes relatively few 
results are available. Accordingly, Sections 2, 3, and 4 are devoted to circular and annular 
membranes.  In the first part of Section 2, results of the small finite deflection theory (1.7), 
called the F6ppl theory, are presented for circular membranes. In the second part, results for 
a (simplified) geometrically nonlinear theory involving arbitrary finite rotations (1.6), called 
the Reissner theory, are discussed for circular membranes. Similarly, annular membranes for 
the F6ppl and Reissner theories are discussed in Section 3. The tensile solutions of Sections 2 
and 3 are characterized by tr r i> 0 where tr r is the radial stress component. In Section 4, the 
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additional condition that the circumferential stress % satisfies %/>  0 is imposed,  leading to 
what  we call wrinkle-free solutions. Again these solutions are discussed both within the 
f r amework  of the F6ppl and the Reissner theories. Finally, some results for curved 
m e m b r a n e s  are presented in Section 5. 

2. Circular membranes  

Consider  a circular membrane  of radius a and thickness d subjected to a vertical pressure 
p = p(r) .  A t  the edge r -- a, either a constant radial stress o- r or a constant radial displace- 
ment  u is prescribed. Assuming small finite deflections, we have the governing equation 
(1.8). Here  s = r and F =  ro'rd. Dimensionless variables are introduced by r = ax, trr/E = 
key~4, p(r)  = pofi(x) ,  where E is Young's  modulus,  related to A in (1.8) by A E d  = 1, Po > 0 
is the max imum of Ip(r)l, so that Ifi(x)l ~< 1, and k = (2poa/Ed)  ~/3. f i(x) is assumed piece- 
wise continuous for 0 ~< x ~< 1. In terms of x, y and fi, equation (1.8) can be reduced to the 
form 

L y : = - y "  3 y  ' 2 2 f o  - x = ~ Q2(x) ,  0 < x < l ,  e ( x ) : =  --x t f i ( t )d t .  (2.1) 

Hencefor th  primes denote  differentiation with respect to x, unless stated otherwise. If the 
surface load is uniform, then fi = 1 and therefore Q = 1. The circumferential stress o- 0, the 
radial and normal  displacements u and w are related to the variables x and y through 

O-o/E = kZ(xy ' + y ) / 4 ,  u = ak2x[xy ' + (1 - u ) y ] / 4 ,  

f/ w = ak tQ(t)[y(t)]  -~ d t ,  0 ~ ~, <~ 1 / 2 .  

(2.2) 

Solutions of (2.1) are sought satisfying the boundary conditions 

y ' ( 0 ) = 0 ,  y ( 1 ) = S > 0  or y ' ( 0 ) : 0 ,  y ' ( 1 ) + ( 1 - v ) y ( 1 ) = H E ~ ,  (2.3) 

depending on whether  o- r or u is prescribed at the edge r = a. Hence,  (2.1) and (2.3) define 
two different boundary  value problems for the circular membrane ,  called Problem S and 
Problem H in what follows. An integration of (2.1), making use of x3Ly = - ( x 3 y ' )  ', shows 

that  

x3y'(x)  = - fo  2t3 y ~  Q2(t) d t~<0.  (2.4) 

Accordingly,  the solutions of both Problems S and H are monotone  decreasing in the 
interval [0, 1]. In particular, we have y(x)/> S > 0 in Problem S. 

The  first solution of (2.1, 2.3) for uniform pressure ( Q  = 1) and H =  0 was apparently 
given by Hencky  [23], using formal  power  series in x. In a formulation slightly different f rom 
[23], we introduce z = 2 /y  and seek a solution in the form 

y ( x ) =  ~ yn x2n , Z(X)= ~ Z,X 2" , ZO= 2/y  o . (2.5) 
n = 0  n = 0  
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The  convergence of this series solution was first established in 1965 by Weinitschke [46], 
yielding first existence theorems for Problem S and Problem H for H = 0. A different and 
simpler convergence proof  for both fixed edge (H  = 0) and loaded edge (Problem S) was 
published later in [47], where uniqueness of solutions was also established. 

The  first step is to introduce the series (2.5) into Ly = z2/2 and yz = 2, obtain recurrence 
relations for the coefficients y , ,  z ,  and show by induction that for suitable choices of A, B 
and q > 1 

A B 
lY"[<<- [ l ) 'n+ "'q+' ' Z n ~  ¢n + 1,----------- ~ ,  ) , n = l , 2  . . . . .  (2.6) 

This has the immediate consequence that the series (2.5) and the differentiated series y'(x) 
are all uniformly convergent for Ixl ~< 1. The next step is to show that there exist suitable 
choices of A, B and q such that the boundary conditions for Problems S and H,  respectively, 
are satisfied. In Problem S it is easy to see that convergence will occur if S is sufficiently 
large. In Problem H,  the boundary term y '  + (1 - u)y at x = 1 must be shown to change sign 
for two different choices of A, B and q. The details are quite technical, so we refer to [47] 
and [44]. The results can be summarized as follows: 

T H E O R E M  2.1. Problem S for Q = 1 and S > S o = 4/5 has a unique solution y ( x ) > 0 ,  
which admits a uniformly convergent power series expansion for Ixl <~ 1, with S < Yo <~ S + 
( 1 /2S )  2. 

T H E O R E M  2.2. Problem H for Q = 1 and H = 0 has a unique solution y(x). The solution is 
positive and can be represented by a power series, uniformly convergent for Ix[ ~ 1, with 
2 0 / 1 9 < y o < 2 f o r  v = l / 3 .  

The series solutions may be used for getting accurate numerical approximations to Problems 
S and H. A number  of different numerical treatments of both circular and annular 
membrane  problems have appeared in the engineering literature (see [25] and the references 
given there).  

A different and more elegant existence proof  for solutions of Problems S and H can be 
obtained by an integral equation method. This was first done by Dickey [10], again for .the 
case of uniform pressure Q - - 1 .  He showed existence of a unique c l [0 ,  1]-solution for 
Problem S provided S 3 > 4j -2, where j denotes the first zero of the Bessel function J1, which 
amounts  to S > S 0 -  0.648, thus improving on Theorem 2.1. By an interpolation between 
values of S well above S 0, he also showed existence of a unique solution of Problem H for 
/4 = 0. The method will be discussed below. 

In order  to remove the above restrictions Q = 1 and S > S 0, Callegari and Reiss [6] 
employed a shooting technique. In this way, they first proved existence and uniqueness of 
solutions of Problem S for all S > 0, and for variable load p(r). The proofs in [6] are quite 
technical and will not be described here. They are much more complicated than the ones 
given below by the integral equation method. Although the shooting method is constructive 
with respect to the initial value problem, no converging iteration scheme was given in [6] to 
solve the relevant boundary value problems. 

A simple and standard way to find an integral equation for Problems S and H is to 
calculate the Green 's  functions G(x, t) for the problems x3Ly = 0  with homogeneous 
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boundary  conditions (2.3). It follows that the solutions of Problem S 
respectively, are equivalent to an integral equation [49] 

fO 2t 3 y(x) = q + y - - ~  Q2(t)G(x, t) dt =: T y ,  

and Problem H,  

(2.7) 

where q = S for Problem S and q = H/(1 - v) for Problem H, and 

f ( x  - 2 + m ) / 2 ,  O~<t~<x~<l,  (2.8) 
G ( x ' t ) = [ ( t - Z + m ) / 2  ' O<~x<~t<~l, 

where m = - 1  or m = (1 + v)/(1 - v) for Problem S or Problem H, respectively. In the case 
Q = 1 the integral equation (2.7) for Problem S reduces to that obtained by Dickey [10]. 

With a view towards getting numerical solutions for Problems S and H, we first consider a 
constructive proof  of the existence of solutions of (2.7). Starting with Y0 = q > 0, we define 

y , ( x )  by Y,+I = Ty, . 

L E M M A  2.3. The operator T is antitone: I f  0 < y <- z, then Ty >I Tz. 

A general theorem on antitone operators (e.g., see [9]) implies that the sequence Yn has the 
following basic property.  

L E M M A  2.4. I f  0 < Yo <~ Y2 <~ Y~ then for any positive integer n 

Yo <- Y 2  <~ Y 4  ~ " " " ~ Y 2 n  <~ Y 2 n + l  ~< " " " ~ Y 3  ~< Y l  • (2.9) 

In view of Lemma 2.3 and the choice o f y  0 the condition Y0 ~< Y2 ~< Yl is satisfied for any S > 0 
or any H > 0. In order  to apply the Banach fixed point theorem we introduce a norm 

Ilyll = sup (W(x)-'ly(x)l}, W ( x ) > 0 .  
O ~ x ~ < l  

The objective then is to find an optimal W(x) such that T is contractive for a maximal range 
of the parameters  S and H. The result of this calculation is [49]: 

T H E O R E M  2.5. A s s u m e  Q2(x) <~ C, then the integral equation (2.7) has a unique solution 
for all S > S o = 0.648c 1/3 in Problem S and for all H > H o = Ho(v)e 1/3 in Problem H, where 
0.648 < Ho( v ) < 1.057 for 1/2 >1 v >I O. In these ranges of  S and H, y , (x )  converges uniformly 
to the solution y(x).  The convergence is alternating and y(x) E M,  where 

M, := [Y2,, YZn+l] : =  {Y(x) lY2, <~Y ~<Y2,+l} • (2.10) 

In particular, for n = O, we have for the solution of Problem S 

1 (  1 
2t3QE(t)G(x, t) dt = Yl , S <-y(x)<~ S + - ~ o  

1 ( 1 - x  2) for Q = I  S <~ y(x) <~ S + 4 S  2 , . 

(2.11) 
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The restrictions on the size of S and H can now be removed by applying Schauder's fixed 
point theorem.  In view of Lemma 2.4, the operators T map the convex set Mn into itself, 
that is, for any positive integer n we have TM nCMn,  provided S > 0  ( H > 0 ) .  T is 
completely continuous on the set M 0 _D Mn (e.g., see [9]). Hence the Schauder fixed point 
theorem is applicable and yields [49]: 

T H E O R E M  2.6. Problem S (Problem H) has at least one solution y(x) > 0 for all S > 0 
(H > 0). The solution is contained in M n. 

The uniqueness is proved by a classical argument. Let  Yl, Y2 be two positive solutions of 
(2.1),  (2.3) then w = Yl -Y2  satisfies 

2Q2(x) 
L w = - M ( x ) w ,  M ( x ) -  2 2 (Yl + Y2) >~0, (2.12) 

YlY2 

w ' ( 0 ) = 0  and w ( 1 ) = 0  or w ' ( 1 ) + ( 1 - v ) w ( 1 ) = 0 .  (2.13) 

By the maximum principle (see Prot ter  and Weinberger [36]) it follows that w---0. 

T H E O R E M  2.7. Any positive solution of  Problem S (Problem H) is unique, if ~(x) is 
piece-wise continuous. 

The  unique solutions of Problems S and H guaranteed by Theorems 2.6 and 2.7 cannot be 
constructed by a convergent iteration, yet we obtain upper and lower bounds to the exact 
solution by iteration. 

It should be mentioned that the existence part of Theorem 2.6 was obtained independently 
by Stuart [43], as an application of his general theory of integral equations with decreasing 
nonlinearities. He  also obtained convergence of the sequence yn(x) from Problem S in the 
range S > S O = 0.648c 1/3 (see Theorem 2.5). 

It is worth noting that S > 0 covers the complete physically meaningful range of tensile 
solutions for Problem S, while H > 0 does not. In the latter case, a physically significant 
situation is H = 0. On the other  hand, the condition q > 0 in (2.7) is essential for starting the 
iteration. If H = 0, the operator  T is still antitone, but it does not seem possible to choose Y0 
and yt such that Y0 <~ Y2 ~< Y~. T is not contractive, nor is the Schauder theorem applicable. 
Hence  it appears that Problem H for H = 0 cannot be solved directly via an integral equation 
method.  However ,  there is a simple idea, by which this case can be covered. Any solution 
y(x; S) of Problem S is also a solution of Problem H for a value of H given by 

N(S) := y ' (1;  S) + (1 - v)S = H .  (2.14) 

A simple estimate yields y ' (1 ;  S)---~-o0 as S---~0 [49]. Since N(S)---~ +o~ as S---~o% there 
exists for any given real value of H a corresponding value S > 0 such that N(S) = H. This 
result, together  with Theorem (2.7), yields 

T H E O R E M  2.8. Problem H has a unique positive solution for all real H. 

A substantial improvement  of the convergence properties of the iteration y~+l = TYn can be 
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achieved by an interpolated (averaged) iteration of the type 

Yn+ l = oI T Y n  A~_ (1 - a ) y ,  . (2.15) 

This was first pointed out by Ostrowski [34]. It was rediscovered in connection with an elastic 
plate problem by Keller and Reiss [27], who found numerically, that the range of conver- 
gence was drastically increased by an appropriate choice of a. But the convergence has 
remained an open problem until Novak [33] recently proved the convergence of the iteration 
(2.15) for a class of operators T which includes the operator T defined in (2.7). More 
precisely, he proved the following 

T H E O R E M  2.9. Problem S has a unique solution y(x) for all S > 0 which can be obtained as 
the limit o f  the iteration (2.15). The interpolated iteration converges for all a > 0 which are 

sufficiently small. 

Hence we have arrived at a constructive method to solve Problem S in the full range S > 0. 
In addition it turns out that the iteration (2.15) also converges for the operator T 
corresponding to Problem H including the important case H = 0 [49]. Numerical results 
based on (2.15) are also given in [49]. The value of S in (2.14) corresponding to the fixed 
edge problem H = 0 is approximately S = 0.8549 (for v = 1/3). 

Next we turn to the boundary value problems posed by Reissner's finite rotation theory. 
The governing equation is (1.6), which can also be derived directly (without reference to 
shell theory),  as shown by Clark and Narayanaswamy [8]. Furthermore, the equations in [8] 
can be shown to be equivalent to those derived earlier by Bromberg and Stoker [5]. We 
consider again a circular membrane under vertical pressure Pv = p(r) ,  with prescribed o- r 
(Problem S) or prescribed u (Problem H) at the edge r = a. Hence PH = 0 and Ps = Pv sin do 
in equation (1.6). Introducing the same dimensionless variables as before, we obtain the 
basic differential equation and the boundary conditions for Problems S and H, 

Ly = f (x ,  y) - 2vk2f i (x )Q(x) /D(x ,  y ) ,  0 < x < 1,  

f (x ,  y ) : =  (2/kx)2[1 - y /D(x ,  y)] ,  O(x, y ) :=  [y2 + k2x202(x)]1/2 ' (2.16) 

y ' ( 0 ) = 0  and y ( 1 ) = S  or y ' ( 1 ) + y ( 1 ) - v D ( 1 ,  y ( 1 ) ) = H .  

The meridional and circumferential (Piola-Kirchhoff) stress resultants S, and So, the angle 
of rotation do and the radial and axial displacements u and w are related to y as follows 

Se~/Ed = k2D(x, y ) / 4 ,  So/Ed = k2(xy ' + y ) / 4 ,  

cos dO = y /D(x ,  y ) ,  u = ak2x[xy ' + y - vD(x ,  y) ] /4 ,  (2.17) 

 111 d]  w = a 1 + ~ kZD(t, y(t)) - v -~ (ty) sin do(t) d t .  

In contrast to the F6ppl theory, the boundary value problem (2.16) contains, besides Q(x), 
the load parameter k = (2Poa/Ed) 1/3. It is seen that in the limit case k---~0 equations (2.16) 
reduce to Problems S and H for the F6ppl theory (2.1), (2.3). For finite k, the solution 
structure of (2.16) turns out to be markedly different from that of (2.1), (2.3), in particular 
with respect to Problem H. 
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A mathematical analysis of Problems S and H defined by (2.16) was virtually nonexistent 
until 1980. Without surface load, the problem simplifies considerably. Two cases were 
treated by Clark and Narayanaswamy [8]: a membrane of revolution with a uniform radial 
edge load and a membrane with uniform edge load parallel to the axis of revolution. The 
first problem is reducible to a linear equation solvable in closed form. The second problem is 
nonlinear, it includes the special case of a flat annular membrane with transverse edge load 
treated by Schwerin [39] for the F6ppl small deflection theory. In the presence of surface 
load, the integral equation technique used for the F6ppl membrane equations was extended 
by Weinitschke [48] to obtain first existence results for v = 0 and a rather restricted range of 
boundary data. 

A theory of existence and uniqueness of positive solutions for the boundary value 
problems (2.16) for the full range of physically meaningful data is still lacking. It has been 
argued that terms involving v in the differential equations for finite rotations can often be 
neglected. Simmonds has given a rigorous justification of neglecting terms multiplied by v in 
linear shell theory [40]. Although in the nonlinear theory his technique is not applicable, one 
might argue heuristically in the present case that the v-term in the differential equation 
(2.16), which is O(k2), is small compared to the term f(x, y), as the dominant load 
component  acts in the direction normal to the membrane. For sufficiently small k this is 
certainly justified, but the influence of that term might increase for larger values of k. In the 
remaining part of this paper, we omit the term 2vk2fiQ/D and refer to (2.16) as the 
simplified Reissner theory. 

The nonlinear function f(x, y) has the same monotonicity property as in the F6ppl theory 
because of 

Of _ kZxZQZ(x) 
Oy [y2 + k2x2Q2(x)]3/2 ~ 0 .  (2.18) 

Hence the integral equation method employed for the F6ppl theory is applicable so long as 
the boundary conditions are linear, that is for Problem S, S > 0 and for Problem H, H > 0, 
v = 0. The integral equation equivalent to Ly = f and boundary conditions is 

c1 
y(x) = q + J0 K(x, Of(t, y(t)) dt + q0[y2(1) + O2] 1/2 =: Ty , (2.19) 

where 0 ~< x ~< 1, iT(t, y ) : =  [1 - y/D(t, y)]/ t  and 19:= k I Q(1)[. The Green's function K(x, t) 
is defined by 

$2k-2(1 + nxZ)(t/x) 2 O-<t~x -< l  
K(x, t) =[2k_2(1  + nt2), O<~x<~t<l " (2.20) 

For Problem S, we have 

q = S , q0 = 0 ,  n = - 1  . (2.21) 

For Problem H, we have 

q = H ,  qo = v ,  n = + 1 .  (2.22) 

K(x, t) is essentially the same as G(x, t) defined in (2.8), with v = 0 in Problem H. 
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Problem S and Problem H for v = 0 can now be solved as before. In view of K/> 0 and 
(2.18) the operator T defined in (2.19) is antitone, so that Lemma 2.3 and Lemma 2.4 hold, 
provided q > 0. Application of the Banach fixed point theorem yields a theorem analogous 
to Theorem 2.5. The integral equation (2.19) has a unique positive solution for restricted 
ranges S > So(k)c I/3, Problem S, and H > no(k)c 1/3, Problem H. In these ranges of S and H, 
the sequence y,(x) defined by Y,+I = Ty, converges uniformly to the solution y(x), and 
y E M  n f o r n = 0 , 1 , . . .  [49]. 

The restriction on S and H can again be removed by employing the Schauder fixed point 
theorem. The arguments are exactly as in the F6ppl theory, the uniqueness follows as in 
(2.12), (2.13), replacing M by 

4(ya + y2)Qg(x) 
M(x) = D(x, y~)D(x, yz)(ylD(X, Y2) + Y2D( x, Yx)) 

>1 0 .  (2.23) 

T H E O R E M  2.10. In the simplified Reissner theory o f  finite rotations, Problem S, or 
equivalently the integral equation (2.19) has a unique solution y(x) for all S > O. The solution 
is positive and y E M n, n = 0, 1, 2 , . . .  [49]. 

For Problem H, this theorem only holds for v = 0, H > 0 .  The interpolated iteration (2.15) 
also applies to the simplified Reissner theory, rigorously for Problem S, that is, Theorem 2.9 
remains valid. We have also tested (2.15) numerically in Problem H for v ~ 0  and found 
convergence for H/>  0. 

In the general case of Problem H, v ~ 0 ,  equation (2.19) is a nonstandard integral 
equation because of the algebraic term multiplying q0 = v. A complete solution of Problem 
H is due to Grabmfiller and Pirner [19] and to Beck [3]. The uniqueness of positive solutions 
is obtained as follows. After multiplying by x3w, we integrate (2.12) over (0, 1) and integrate 
by parts to get for w = Yl - Y 2  

f0 
1 

w'(1)w(1) = x3[w'2(x) + M(x)w2(x)] dx ,  (2.24) 

where M(x) is defined by (2.23). Unless w-= 0, the right-hand side is strictly positive. In 
Problem S, w(1)=  0 and uniqueness follows. In Problem H, we have 

w'(1) + w(1) - r i D ( l ,  y,(1)) - D(1,y2(1)) ] = 0.  (2.25) 

Applying the mean-value theorem, we obtain w'(1) + (1 - vK)w(1) = 0 where 

Y°(1) ~< 1 (2.26) 
0 <  K := [y02(1 ) + kZQ2(1)],/2 , 

Yo = Yl + O(Y2 - Yl) with an intermediate variable O(x). It is seen that Yo is bounded from 
below by min{min yl(x),  min y z ( X ) }  > 0. This yields w'(1)w(1) = - ( 1  - vK)W2(1)~ 0 since 
0 ~< v ~ 1/2, and hence w ~ 0 by equation (2.24). 

We proceed to outline the existence proof. To this end, an extended version of a theorem 
concerning positive solutions of integral equations due to Novak [18] is utilized. Letting 
g(x) := y(x) - q, the objective is to determine solutions g of 
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K(x, t)f(t, g(t) + q) dt + q0[(g(1) + q)2 + O211/2, (2.27) 

satisfying g(x) + q >i O. Existence of solutions of (2.27) are obtained via Schauder's fixed 
point theorem. Consider the convex set M s defined in the Banach space C[0, 1] 

M s = { g E  C[0, 1 ] I 3 H E  C[0, 1] with 0 ~  < H(t) <~ k/8 and 

f0 } g ( x ) =  K ( x , t ) H ( t ) d t +  qo[p2 +®2] 1/2, O<~p<-p o . 

(2.28) 

Here  8 > 0, to be chosen later, and P0 > 0 is defined by 

1 8 g0+lql+O K0:= (2.29) 
Po - 1 - q0 ' 6 °na~ax~ 3 8 k "  

One can show that, if g is a solution of (2.27) satisfying g(x) + q/> 6 > 0 then Ig(x)] ~< P0 and 
g E M a. Hence  the solution set of (2.27) is a subset of M s. Next one introduces an operator  
W acting on M s by 

;o 1 (Wg)(x) := K(x, t)f(t, dg(t)) dt + qo[(g(1) + q)2 + 0211/2 (2.30) 

A similar operator  and the cutoff function dg(x):= max{g(x )+  q, 8}, 0 ~< x ~< 1 had first 
been introduced by Novak [18] within the context of annular F6ppl membrane problems. It 
is not difficult to prove the following 

T H E O R E M  2.11 [18]. Suppose there exists a constant 8 > 0  such that for any g E M  a 
satisfying mino~x~i[g(x ) + q] <- 8 we have the property 

[0,11: g(xo) < (Wg)(xo). (N) 
Then equation (2.19) has a solution y(x) > 8. 

A sufficient condition for the existence of positive solutions of Problem H is now obtained by 
choosing H such that condition (N) is satisfied. 

T H E O R E M  2.12 [18]. Assume that either H >>-0 or 

fo 1 37 ( 1+ t2~ H < 0 and K(1, t) t, - H  7 / d t  + vO > - H  
2t- 

then there exists a number 3 > 0 such that condition (N) holds for Problem H. 

(2.31) 

In the F6ppl theory, solutions of Problem H exist for all real H (Theorem 2.8). This result 
does not carry over to the simplified Reissner theory. Indeed, a tensile solution y of Problem 
H necessarily satisfies y(x)>1 y ( 1 ) >  0. But from (2.19) one has, if Q2(x )>  0 ,  

fO 0 < ( 1 - v ) y ( 1 ) ~ < H +  K(1, t)--dt + v O  
t 

(2.32) 
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Fig. 1. The arcs (n) and (e) denote ,  respectively, the curves F, and F e which are approximations for the separatrix 
(H)  be tween the domains  of existence (dotted) and nonexistence (blank) of  tensile solutions to Problem H. The  
domains  of  wrinkle-free solutions (crosshatched) which extend unboundedly  to the right are bounded  to the left by 
the  arcs (wS) for Problem S and (wH) for Problem H. The  load is uniform and Poisson's  number  is u = 1/3. 

which provides a necessary condition for the existence of a solution to Problem H. 
Unfor tunate ly  the integral in (2.31) cannot be expressed in closed form, even in the case of 
uniform pressure Q = 1. But the important point is that (2.31) and (2.32) yield graphs F e and 
F, in the (H,  k) plane bounding the domains of existence and nonexistence of tensile solutions 
of Problem H,  respectively. For Q = 1, these graphs are shown in Fig. 1 (for v = 1/3).  

It is clear from the above that there must be an arc F in the (H, k) plane, located between 
F e and F n in Fig. 1, which separates precisely the domains of existence and nonexistence. 
Indeed,  since the solutions of Problem H are contained in those of Problem S for S > 0, we 
simply need to solve Problem S for S = 0 and determine the corresponding value of 
H =  H(k) from (2.16). As an analytic solution of (2.19) is not available, we solve the 
problem numerically. This was done by Weinitschke in [45], although an existence proof  for 
Problem S, S = 0 was still lacking. Recently, Beck [3] has supplied such a proof, which is by 
no means simple. The separation curve F, whose existence and geometric properties were 
also proved in [3], is included in Fig. 1, again for the case Q = 1, u = 1/3. 

3. Annular membranes  

In this section we consider annular membranes of inner radius b and outer radius a under 
vertical pressure p = p(r). At the edges, either the radial stress or the radial displacement is 
prescribed. The governing equations (1.6) and (1.8) are the same, and so are the dimension- 
less variables, except that the interval (0, 1) is replaced by (e, 1) where e = b/a. This also 
changes the lower limit in the integral for Q. Thus the annular membrane problems can be 
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reduced to the differential equation 

I (2/y2)R2( x, e): 
Ly = f(x, y):= [ (2/kx)2[1 _ y/D(x, y)]: 

0 < e < x < l ,  

X 

F6ppl theory ,  
simplified Reissner theory ,  

D(x, y):= [y2 + k2x2Re(x, e)]l/2 . 

171 

(3.1) 

The radial and circumferential stress components tr r and tr0, and the radial and normal 
displacements u and w are related to y as in (2.2) and (2.17), provided Q(x) is replaced by 
R(x, e) in all the formulas. If the surface load is uniform, then R(x, e) = 1 - e2/x 2. A pair of 
boundary conditions at x = e and x = 1 is taken, respectively, from 

y(e) = s or ey'(e) + ( 1 -  v)y(e) = h ,  (3.2) 

at the inner edge and 

fy ' (1 )  + ( 1 -  v)y(1) = H: 
y ( 1 ) = S  or [ y ' ( 1 ) + y ( 1 ) - u D ( 1 ,  y ( 1 ) ) = H :  

F6ppl ,  
simplified Reissner,  (3.3) 

at the outer edge. Introducing the notations (s, S), (s, H) ,  (h, S) and (h, H)  reference shall 
be made in an obvious manner to the four different boundary value problems arising from 
(3.1), (3.2) and (3.3). 

The analysis of annular membrane problems defined by (3.1) and (3.2) for s/> 0, S/> 0, h 
and H real, and for an arbitrary load fi(x) is more complicated than in the circular membrane 
problems since solutions y(x) are permitted to become zero at the edges of the annulus. The 
regular tensile solutions of (3.1) (rt-solutions for short, which have to be understood as 
functions y E C2(e, 1) fq Cl[e, 1] satisfying y(x) > 0 for e ~< x ~< 1) now have to be dis- 
tinguished from regular nonnegative solutions (rn-solutions) which suffer a loss of regularity 
y E C2(e, 1) D C°[e, 1] and satisfy y(x) > 0  only for e < x  < 1. Furthermore, the solutions 
y(x) are not necessarily monotone in the interval (e, 1), there is no counterpart of inequality 
(2.4) here. The four different boundary parameters s, h, S and H considerably enhance the 
variety of solution behavior. 

As in Section 2, we begin by discussing results for the F6ppl small finite deflection theory. 
The first solution of (3.1)-(3.3) for uniform pressure and s = H = 0 was given by Schwerin 
[39] in terms of a formal power series. In the absence of surface loads, he also found a closed 
form solution for a membrane subjected to axial edge load and fixed edges (h = / 4  = 0). To 
simplify his calculations, he transformed the differential equation (3.1) into the form 
U"(~) = - ~ 2 / U  2. This transformation turned out to be crucial for the theoretical analysis of 
rn-solutions for both F6ppl and Reissner theory. We write the Schwerin transformation for 
our purposes as follows 

2 2 
X - - 8  

Z - - 1 _ e 2  , g(z)=to4xiy(x), e<~x<-l, ¢ . 0 : = ( 1 - - E 2 )  - 1 /3  (3.4) 

This change of variables maps any m-solution y(x) of (3.1) into an m-solution g(z) of the 
differential equation 



172 H.J. Weinitschke and H. Grabmiiller 

d2g - F(z, g):= ~ 2P2(z'e)/g2: F6ppl ,  
dz  2 [RS(z ,  g): simplified Reissner ,  

0 < z < l ,  (3.5) 

where the following notations are used: 

1 f~(z) P(z, e) := - -  t,6(t) dt 1 6 2 x(z) : =  [ z ( 1  - 6 2 )  + 62] ' '2  , 

( 1 ) 2 [  g ] 
RS(z, g ) : =  koJx(z) 1 ~g2 +®2(z ) ' ®(z) := 2kwx(z)P(z, 6). 

The boundary conditions (3.2), (3.3) can be expressed in terms of z and g(z) by 

g(0) = s or Bo[g I = h ,  g(1) = S or Bl [g  ] = H .  (3.6) 

Here  the new boundary parameters s/> 0, S ~> 0, h and H real, are obtained by suitably 
stretching the old ones. The boundary operators Bj[g] have the form 

B0[g ] := 62g(0) - / ~ g ( 0 ) ,  tz := ½(1 - 62)(1 - v ) ,  

Ig (1 )  - ~g(1):  V6ppl, 

Bl[g]  := [g(1)  1 -  e 2 
5 [g(1) + v'V/g2(1) + ®2(1)]: simplified Reissner.  

Unless otherwise stated, a dot denotes differentiation with respect to z. Since F(z, g) is 
nonnegative it is clear from (3.5) that any rn-solution g(z) must be concave. Thus, g(z) with 
g(0) = s and g(1) = S is supported by the linear function q(z) := zS + (1 - z)s in the sense 
that g(z) - q(z) >i 0 holds. 

The convergence of Schwerin's series solution of ~ = -z2/2g 2, ( f i  = 1), was proved by 
Weinitschke in [48], but only for the case s = 0 and S or H sufficiently large, not covering the 
situation H = 0. An integral equation method analogous to (2.7) was also employed in [48] 
for the solution of Problem (s, H).  However,  the results obtained by applying the Banach 
fixed point theorem will not be discussed here, as they impose unacceptable restrictions on 
the parameters  e, v, s and H,  excluding, in particular, the case s = H = 0. As for circular 
membranes,  a constructive existence proof  for an rt-solution (not covering a stress-free inner 
edge s = 0) as a limit of yn(x) defined by (2.15), with an appropriate definition of T, has 
been given by Novak [33]. 

The solutions for a free inner edge s = 0 and uniform load ,6 = 1 can be expressed in terms 
of solutions of the circular membrane,  as shown by Grabmfiller and Weinitschke [21]. More 
precisely, we have the following 

T H E O R E M  3.1. Let z(~) be the solution of (2.1), (2.3), Problem S with z(1) = S~ := (1 - 
E2) -4/3 S > 0, Q = 1. Then there exists a unique solution y(x) of Problem (s, S), s = O, fi = 1. 
This solution is positive and has the form 

y(x) = (1 - 62) 1'3 1 -- Z(SC), 
X - 2~1/2 

~: = \ 1---L--~} (3.7) 
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Let z(~) be the solution of  (2.1), (2.3), Problem H with z ' ( 1 ) +  ( 1 - v , ) z ( 1 ) =  H E := 
(1 - e2)-l/3H, where v~ := v - e2(1 + v), Q = 1. Then there exists a unique solution of  
Problem (s, H),  s = O, fi = 1. This solution is positive and has the form (3.7). 

In particular, this theorem covers the physically interesting cases s = 0, S > 0 and s = 0, 
H / >  0, but only for uniform load. It also proves a formal result obtained by Schwerin [39] 
concerning the stress concentration factor. In addition, existence and uniqueness of rt- 
solutions for Problem (s, S), s > 0, S > 0 and for Problem (s, H)  for s > 0 and s + H > 0, in 
terms of the new parameters defined in (3.6), for arbitrary load functions fi(x), was proved 
in [21]. This was done by reducing these two problems to integral equations with antitone 
operators  and applying Schauders fixed point theorem, along the lines described in Section 2. 

Concerning the more difficult Problems (h, S) and (h, H) ,  a new device was brought into 
the analysis of rt-solutions by E. Novak [33] who considered positive solutions of certain 
nonlinear integral equations. His method led to a considerable improvement of the known 
existence results. The standard method of using Green's  function shows that rt-solutions 
g(z), for example of Problem (s, S), coincide with the positive C°[0, 1]-solutions of the 
integral equation 

fo 1 g(z) = q(z) + k(z, t)F[t, g(t)] d t ,  0~< z ~< 1,  (3.8) 

where q(z) is defined above and where 

~ t ( 1 -  z): O<~t<-z<~l, 
k ( z , t ) = [ z ( 1 - t ) :  O<~z<~t<_l. 

A new dependent  variable f ( z ) := g ( z ) - q ( z )  is introduced, and instead of (3.8) the 
following integral equation is considered (see (2.30)): 

fol f (z)  = (Wf)(z) := k(z, t)F[t, ds(t)] d t ,  0 ~ z <~ 1. (3.9) 

Here ,  for some 6 > 0, the cutoff function dr(z ) := max{f(z)  + q(z), 6}, 0 ~< z ~< 1, provides a 
lower bound for the solutions of (3.9). As in Section 2 a convex subset M C C°[0, 1] is 
considered which consists of all functions f admitting an integral representation f ( z )=  
S~ k(z, t)H(t) dt for some H ~ C°[0, 1], H I> 0. An application of the Schauder fixed point 
theorem then yields an analogon to Theorem 2.11, with g(x) replaced by f(z)  and W defined 
by (3.9), proving that equation (3.9) has a C°[0, 1]-solution f(z)  with f + q > 6. 

It is clear that Novak's  condition (N) must be void if s > 0 and S > 0 is considered. Thus, a 
new existence proof for rt-solutions to Problem (s, S) is obtained because it is seen from (3.9) 
that g(z) := f(z)  + q(z) solves the integral equation (3.8). In [17], the question of uniqueness 
of rt-solutions to each boundary value problem was fully resolved by a suitable application of 
Hopf ' s  generalized maximum principle [36]. The above new integral equation method was 
also extended to Problems (s, H) ,  (h, S) and (h, H).  The particular constellation of Problem 
(s, H)  again leads to a void condition (N). In summary, we have [17, 18]: 

T H E O R E M  3.2. Let P2(1, e ) > 0 ,  then in the small finite deflection theory both Problem 
(s, S) and Problem (s, H) have a unique rt-solution for all s > O, S > 0 and H real. Moreover, 
rt-solutions for Problems (h, S) and (h, H) are unique. 
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Analogous existence results do not hold in the cases of Problems (h, S) and (h, H) for the 
F6ppl theory. A discussion of the crucial condition (N) surprisingly shows that rt-solutions 
are absent in an unbounded, simply connected subset of the respective parameter ranges 
(h, S) and (h, H) .  This was first discovered by Grabmiiller and Novak [18], who estimated 
the domains of existence and nonexistence of rt-solutions by simple analytical curves. 
Unfortunately, a gap was left in the parameter ranges where a definite statement on 
existence or nonexistence was impossible. We shall return to this point after having 
commented on Reissner's finite rotation theory for annular membrane problems. 

Before 1980, a mathematical analysis of the boundary value problems posed by the 
simplified Reissner theory seemed to be nonexistent as far as annular membranes under a 
nonvanishing surface load are concerned. First existence results for a rather restricted range 
of the boundary data were obtained by Weinitschke [48], who extended the integral equation 
technique formerly used for the F6ppl membrane equations. The discovery of Novak's 
device led to a marked improvement and extension of these results. The general analysis 
developed above covers also the membrane equations of Reissner's theory and thus provides 
the existence of rt-solutions to Problem (s, S) for each s >0 ,  S >0.  This result was 
established by Grabmfiller and Pirner [19]. The uniqueness of rt-solutions was also proved in 
[19] for the whole set of physically meaningful boundary parameters s > 0, S > 0, h and H 
real, and for each of the problems defined by (3.1) and (3.3). In summary, there is the 
following 

T H E O R E M  3.3. (a) Let P2(1, e) > 0, then Problem (s, S) has a unique rt-solution for all 
s > 0  and S > 0 .  
(b) Problems (s, H),  (h, S) and (h, H) have at most one rt-solution for all s > O, S > O, h and 
H real. 

Problems (s, H) and (h, H) differ from those of the F6ppl membrane model since the 
boundary operator Bl[g ] in (3.6) now is genuinely nonlinear. The integral equation (3.8) 
changes to the form 

;01 g(z )=q j ( z )+  k j (z , t )RS[t ,g( t )]dt+wj(z)~/g2(1)+02(1) ,  0 ~ z ~ l ,  (3.10) 

with appropriate Green's functions k~(z, t) and with linear functions qj(z):= Ajz  + Bj, 
wj(z) := u(Cjz + Dr), dependent on the boundary parameters s, S, h and H. The subscripts 
j = 1, 2, 3 refer to Problems (s, H), (h, S) and (h, H), respectively. The operator W in (3.9) 
needs to be corrected by an additional term wj(z){[f(1) + qj(1)] 2 + Oz(1)} 1/~ and the subset 
M C C°[0, 1] must be suitably modified in order to show that Theorem 2.11 now holds for 
annular membranes within Reissner's theory. Details are elaborated in [19], and the results 
obtained from a discussion of condition (N) differ from those of the F6ppl membrane model 
rather quantitatively than qualitatively. As before, the ranges of boundary parameters 
associated with Problems (h, S) and (h, H) are subdivided into the three simply connected 
subsets of existence, of nonexistence and a remainder of unknown relation to rt-solutions. 
Surprisingly, the behavior of Problem (s, H) alters significantly when the theory turns over 
from small finite deflections to finite rotations. Contrary to the statement of Theorem 3.2, 
the parameter range s > 0, H real, now splits in the same manner as described above. An 
explanation stems from the concept of supeffunctions which was more thoroughly discussed 
in [141. 
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A concave function g= E C2(0, 1) fq C°[0, 1] is said to be a superfunction of Problem (s, S) 
if for any m-solution g(z) the relations g(])= g=(j) with j = 0, 1, and g(z)<~ go~(z) with 
0 ~< z ~< 1 hold. For s/> s o and S I> S 0, a superfunction g=(z) of Problem (s, S) is generated by 
g=(z) := (1 - z)(s - So) + z(S - So) + g=.o(Z) where g~o(Z) denotes any superfunction of 
Problem (So, So). For example, suitable superfunctions of Problem (s = 0, S = 0) are pro- 
vided by [14] 

J ~/z(1 - z): 

g ° % 0 ( Z )  : = 09 4 X(Z) 

F6ppl ,  

simplified Reissner .  
(3.11) 

Pursuing an idea mentioned in Section 2, rt-solutions g = g(z; s, S) of Problem (s, S) may be 
interpreted as rt-solutions of Problem (s, H)  for a value H given by Bl[g(- ; s, S)] = H. The 
superfunction g~(z):= q(z)+ g~0(z) with g~.0 taken from (3.11) is appropriate to verify 
q(z) ~ g(z; s, S) <~ g~(z) and to show Bl[g(.  ; s, S)]--+ +oo as S--+ +oo. In addition, taking 
account of 

g~(1) ~< g(1; s, S) <~ q(1) - lim sup -1 So k(1 - z, t)F[t, g=(t)] d t ,  
z---,O+ Z 

(3.12) 

an elementary calculation yields lims_,0+ Bl[g(.;s ,  S)] = -o~ for F6ppl's theory, while 

lim B, [g( . ;  s, S ) ] / > g ~ o ( 1 ) -  s -  ½v(1 - e2)]O(1)l =: H l >  -oo 
S ~ 0 +  

in case of Reissner's theory [16]. In this case the range of the mapping (s, S ) ~  
Bl[g(- ; s, S)] does not cover the whole real axis. So rt-solutions must be absent at least for 
H < H , .  

First ideas of the mapping argument used above originate from Pirner's diploma thesis [35] 
where only the finite rotation case was treated. However ,  the ingenious mapping idea was 
appropriate to fill in the gap mentioned above between the domains of existence and 
nonexistence of rt-solution. The following strategy was successful. 

Firstly, the natural domain Ex(s, S) := {(s, S): s/> 0, S i> 0} of existence of m-solutions to 
Problem (s ,S)  is introduced. Theorem 3.3 confirms that the unique rt-solutions 
g := g(z; s, S) of Problem (s, S) are defined at every interior point (s, S) of Ex(s, S). At 
every boundary point of Ex(s, S) there exists a unique rn-solution. This was shown by Pirner 
[35] in the finite rotation case and by Grabm/iller [14] within a more general setting which 
also covers the small finite deflection case, see also [20]. 

T H E O R E M  3.4. Assume p2(1, e ) > 0 ,  and let (s, S) be any boundary point of  the set 
Ex(s, S). 

(a) The small finite deflection model: There exists a unique rn-solution g = g(z; s, S) of  
Problem (s, S) with a finite derivative g(0; s, S) but an unbounded derivative 
g(1; s, S) = -oo if S = O. 

(b) The finite rotation model: There exists a unique rn-solution g = g(z; s, S) of  Problem 
(s, S) with additional regularity g E C~[0, 1] for all s >-O, S >i O. 
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Secondly, each boundary operator Bj, j = 0, 1, acting on the totality of rn-solutions g(z; s, S) 
of Problem (s, S) is interpreted as a mapping /3j(s, S ) :=  Bflg(.;s,  S)] from the domain 
Ex(s, S) into the reals. If the images of the set Ex(s, S) subject to the vectorial mappings 
(s, [31(s,S)) and ([3o(s,S),S) are, respectively, denoted by Ex(s, H) and Ex(h, S), it 
becomes evident that these sets can be expected to form the natural domains of existence of 
m-solutions to Problems (s, H) and (h, S). The more involved Problem (h ,H)  will be 
discussed below. 

Of major interest is the behavior of the semi-axes s/> 0 and S 1> 0 under the mappings/3j 
since their images ~j(s) :=/3j(s, 0) and Fj(S) :=/3j(0, S) should be expected to separate the 
domain of existence of rt-solutions from that of nonexistence. 

The development of the necessary analysis initiated by Pirner [35] was concerned with the 
simplified Reissner model. Pirner's results were substantially based on the following theorem 
which summarizes the main properties of the mappings/3j. 

T H E O R E M  3.5 [The finite rotation model]. Let s o >i 0 and S o >! 0 be fixed. 
(a) The projections [3j(s o, .): ~+ ~ / ~  are strictly increasing and continuous, and so must be 

Fj. The ranges of ~/(So,- ) are the segments [yj(s0), +~). Asymptotic forms of F i are 
provided by 

0-< r0(s) - ~2s = o(1) } 
O<~(I_ t z )S_  F~(S)=o(1 )_ asS--->+~. (3.13) 

(b) The projections [3~(', So): ~+ ~ N are strictly decreasing and continuous, and so must 
be ~9" The ranges of[Jr(., So) are the segments ( - ~ ,  Fj(S0) ]. Asymptotic forms of 7j are 
provided by 

0 <- ~,o(S) + ( 2  + ~)s  = o(1) I 
0 ~  < - ( 1 -  e2)v[O(1)l/2- s -  %(s) = o(1)J  as s---> + ~ .  (3.14) 

A proof of the continuity and monotonicity statements in Theorem 3.5, which is by no means 
simple, was supplied in [20]. The asymptotic forms (3.13) and (3.14) are easily derived from 
the integral representation (3.8) using 

f0' g(0;s ,  S) = S -  s + ( 1 -  t)RS[t, g(t)] d t ,  
(3.15) 

f0' g ( 1 ;  s ,  S )  = S - s - tRS[t, g ( t ) l  d t ,  

and observing that RS[z, q(z)]---> 0 as s---> +~  or S---> +~o. The last relation holds pointwise 
for each z E (0, 1) and for q(z) := zS + (1 - z)s supporting g(z). 

By Theorem 3.5, an m-solution g(z; s, S) corresponding to (s, S) E Ex(s, S) induces the 
displacements h := ~o(S, S) <~ F0(S ) at the inner edge of the annulus, and H :=/31(s, S) ~> 
~'l(s) at the outer edge. Since the mappings /3j(s, .) and /3j(., S) are one-to-one, the 
representations 

Ex(s ,H)={( s ,H) :H>~/ l (S ) , s>~O} ,  gx(h,S)={(h,S):h<~Fo(S) ,S>~O} 

become evident which in turn allow to be interpreted as an existence result for both 
Problems (s, H) and (h, S). 
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T H E O R E M  3.6 [The existence statement of Problems (s, H) and (h, S) for the finite 
rotation theory]. Assume p2(1, e ) > 0 .  Let, respectively, g0(z; S) and gl(z; s) denote the 
unique rn-solutions of  Problems (s = O, S) and (s, S = 0), and define the continuous curves 

"~I(S) : =  g , ( 1 ;  s) 1 - e z 2 ~ l o ( a ) l ,  s~>0, F0(S) :=e2g0(0;S) ,  S~>0. (3.16) 

Then the parameter ranges of  Problems (s, H) and (h, S) are decomposed, respectively, by 3'1 
and F o into complementary subsets of  existence and nonexistence as follows: 

(a) Problem (s, H) ((h, S), resp.) has a unique rt-solution g(z) if and only if s > 0 and 
H > Yl(S) (S > 0 and h < Fo(S ), resp.). 

(b) At any boundary point (s >i O, H = yl(s)) a unique rn-solution g(z) of  Problem (s, H) 
is given by gx(Z; s) and thus satisfies g(O)= s and g(1)=  0. At any boundary point 
(s =0 ,  H) ,  H > H o : =  y1(0), there exists a unique rn-solution g(z) which satisfies 
g( O ) = 0 and g(1) > 0. 

(c) At any boundary point (h = Fo(S ), S >I O) a unique rn-solution g(z) of  Problem (h, S) 
is given by go(Z; S) and thus satisfies g(O) = 0 and g(1) = S. At  any boundary point 
(h, S = 0), h < h o := Fo(0 ), there exists a unique rn-solution g(z) which satisfies g(O) > 0 
and g(1) = 0. 

(d) Outside the sets Ex(s, H) and Ex(h, S) rn-solutions cannot exist. 

It is worth noting that the relations (3.13) and (3.14) supplemented by the supeffunction 
(3.11) provide lower and upper bounds for the separatrices %(s) and F0(S ). Indeed, letting 

T(s) :=  - s  - (1 - e 2) ~,10(1)1/2,  a simple calculation yields 

T~(s )+g~ ,o (1)~Ta(s )~T~(s ) ,  s ~ 0 , /  

J ~2s<-ro(S)~2(S+g~o(O)), s ~ > o .  

(3.17) 

The bounds (3.17) are simpler, but slightly coarser than those given in the paper [19]. The 
domains of existence of tensile solutions of Problem (h, S) for various k are illustrated in Fig. 
2. 

The analysis of Problem (h, H) is more complex because the images of the semi-axes s/> 0 
and S t> 0 in (h, H)-plane now are parametrized arcs 

E' := ((h, H):  h = %(s), H =  yl(s), s~>O}, 

~" :=  {(h, n ) :  h = to(S), n = r , ( s ) ,  s~>o},  

which form a connected continuous arc ~ := E' tO ~" C (h, H).  To make the representation of 
explicit, Theorem 3.5 is utilized. The functions 

p,(h) := %[3'o'(h)1, h ~< h 0 and p2(h):= r l [ r o l ( h ) ] ,  h 1> h0, 

are properly defined and map onto the segments (-0% H0 ] and [H 0, +oo), respectively. This 
shows the (h, H)-plane is complementarily subdivided by the arc 

~, = {(h, H):  H = pl(h) for h ~< h o and H = p2(h) for h > ho} 
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Fig. 2. Tensile solutions y(x) of Problem (h, S) only exist for boundary  parameters  h and S within the dotted 
domain  which extends unboundedly  to the left. The  diagram shows how the separatrix F0(S ) varies with k. For k = 0 
(F6ppl model) the domain  of existence is maximal.  The surface load is uniform, u = 1/3,  and e = 0.1. 

into two subdomains, which clearly are the domains of existence and nonexistence of 
rt-solutions to Problem (h, H). Via an implicit-function argument the following set is 
recognized as the domain of existence: 

Ex(h, H) := {(h, H):  H >i pl(h) for h <~ ho, H/>  p2(h) for h > ho} . (3.18) 

Here,  the details are omitted and reference is made to [20]. Again, the results can be 
interpreted as an existence theorem. 

T H E O R E M  3.7 [The existence statement of Problem (h, H) for the finite rotation theory]. 
In addition to the assumptions of Theorem 3.6, define 

"/o(S) :=  e2g~(0; s) - ~ s ,  s />  0 ,  ] 

F , ( S ) : =  go(l; S) 1 -  e 2 2 IS + u~/S2 + O2(1)]' S~>0'  
(3.19) 

Then the parameter range of  Problem (h, H) is decomposed by "Z into complementary subsets 
of  existence and nonexistence as follows: 

(a) A unique rt-solution g(z) exists if and only if 

H>I p~(h):=y~[y°l(h)]' h~<h o:=%(0), 
p2(h)  :=  F l [ F o ~ ( h ) ] ,  h > h o . L 

(b) At any boundary point (h <~ h o, H =  pl(h)) a unique rn-solution g(z) is given by 



(c) 
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g~(z; s) and thus satisfies g(0) = s = ~ol(h)  > 0 and g(1) = 0. At any boundary point 
(h > ho, H = pz(h)), a unique rn-solution g(z) is given by g0(z; S) and thus satisfies 
g(O) = 0 and g(1) = S = Fo~(h) > 0 .  
Outside the set Ex(h, H)  rn-solutions cannot exist. 

The domains of existence of tensile solutions are given in Fig. 3, for various values of k. 
Lower and upper bounds for the separatrix ~ are derived from a fundamental relation 

between rn-solutions g(z) and any superfunction g~(z) of Problem (s, S). Notice that 
q(z) <~ g(z)<~ g~(z) holds. Taking finite differences at z = 0 and z = 1, in the limit the 
derivatives are subjected to the following inequalities: 

g~(O) t> g(O) >~ S - s/> g(1)/> g~(1).  (3.20) 

Using this and the function 7T(s) defined above one obtains straightforwardly 

1 

B , [ g ]  ~> (1 - t~)S + g~ o(1) + ~,~(s) .  

(3.21) 

From these relations and from (3.17) the following bounds are obtained for the strictly 
increasing arc p~(h), where p~i(h):= H/(e  2 + IX) - (1 - e2)ul®(1)l/2 will be used 

2 
E 

p~(h) + g~ o(1) e2 + ~  g~ o(0) ~< p,(h) <~ p~(h) ,  h <~ h o . (3.22) 
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Fig. 3. Domains  of  existence (dot ted)  of  tensile solutions y(x) to Problem (h, H).  The  boundary  manifold Z defined 
in T h e o r e m  3.7 depends  on k. For k = 0 (F6ppl model) existence extends to all values H < 0 .  The surface load is 
uni form,  u = 1/3,  and e =0 .1 .  
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Analogues estimates for the arc p2(h) are somewhat more complicated but principally 
derivable from (3.17) and (3.22). 

An extension of Pirner's mapping argument to F6ppl's small finite deflection theory needs 
a few changes in the above analysis and has been elaborated in [16, 22] within a more general 
setting of two-point nonlinear boundary value problems. As was seen in the discussion of 
Problem (s, H),  the set Ex(s, H) alters significantly when the theory changes from F6ppl's 
model to Reissner's model. This was a consequence of rn-solutions g(z; s, S) to Problem 
(s, S) getting an unbounded derivative g(1; s, S)---~-~ as S---~0+ in F6ppl's theory, which 
was seen by virtue of (3.12). The question whether a similar behavior occurs at z = 0 has a 
negative answer. For a proof, the superfunction g=(z) of Problem (s, S), s = 0, derived from 
(3.11) has to be replaced by a more appropriate one, for example by 

2 fo I PZ(t, e) 
g=(z) := zS + ~ k(z, t) t2 d t ,  

which possesses a bounded derivative 

2 fo a PC(t, e) g=(0) = S + ~-7 (1 - t) tz dt < + ~ .  

Using (3.20) it becomes evident that g(z; s, S) has a bounded derivative at z = 0, s = 0. As a 
consequence, the existence statement of Problem (h, S) expressed by Theorem 3.6 does not 
change substantially if the small finite deflection theory is considered. 

However,  Theorem 3.7 needs some modifications since the arc yl(S) degenerates to - ~  
because g1(1;s) now becomes unbounded for each s~>0, and because F~(S)---~-~ as 
S---~ 0+.  Thus the separatrix E consists of the arc E" alone. A suitable explicit representation 
of E" is provided by 

~ " =  {(h, H):  h = p ; l ( H )  = ro[r?'(H)], H real}. 

The range of p21 is the segment (h0, +~)  with h 0 := F0(0 ). Therefore, the set 

~< -1 H E x ( h , H ) : =  { ( h , n ) :  h pz ( ) ,  H real} 

has to be recognized as the domain of existence of rn-solutions to Problem (h, H). In 
summary,  the following final existence theorem holds. 

T H E O R E M  3.8 [The existence statement of Problem (h, H) for the small finite deflection 
theory]. Let gj(z; .) and Fj(S) be defined as in Theorems 3.6 and 3.7. Then the parameter 
range o f  Problem (h, H) is decomposed by E" into complementary subsets of  existence and 
nonexistence as follows: 

(a) A unique rt-solution g(z) exists if  and only if  h < p21(H) := F0[Fll(H)]  and H ~ ~. 
The continuous arc p21 is strictly increasing with limE_,_= p~l(H) = h o := F0(0 ) and 
limH_.+~ pz1(H) = +~.  

(b) At  any boundary point (h = -1 H P2 ( ), H) a unique rn-solution g(z) is given by g0(z; S) 
and thus satisfies g(O) = 0 and g(1) = S = F~-I(H). 

(c) Outside the set Ex(h, H) rn-solutions cannot exist. 
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Stability considerations limit the applicability of tensile and rn-solutions to engineering 
problems. According to Stein and Hedgepeth  [42], buckling of a stretched membrane  is 
t e rmed 'wrinkling', and the criterion adopted in [42] for wrinkling is that in a membrane  
compressive principal stresses cannot occur. Hence the vanishing of the minimum principal 
stress is taken to be the condition for incipient wrinkling. Recently this criterion has been 
demonstra ted by a stability analysis, even for physically nonlinear membrane theory,  by 
Steigmann [41]. Since ¢r r />0  in the solutions discussed in the preceding sections, the 
condition of wrinkling is the vanishing of ~r 0. The same criterion was used also by Jahsman et 
al. [24] and by Nachbar [32] in their membrane analyses under point loads. 

In his work on the F6ppl circular membrane  under uniform pressure, Dickey [10] observed 
from his numerical results that Cro(r ) is monotone decreasing in 0 ~< r ~< a. Hence,  ¢ro(a ) = 0 is 
the wrinkling criterion. He found numerically that Cro(a ) = 0 for S = 0.7292, which implies 
that for S > 0.7292 the membrane  is entirely in tension, while for S < 0.7292 circumferential 
compression occurs in some annulus 0 < c < r ~ a. For the fixed edge problem H = 0, he 
found that S ~ 0.7292 for all u, 0 ~ u < 1/2. 

It is seen that the values S and H separating stable from unstable solutions can easily be 
determined by solving the differential equations (2.1) or (2.16) (the u-term omitted) for the 
boundary  condition y ' ( 1 ) +  y ( 1 ) =  0, provided that o-0(x ) ~<0 holds for all x E [0, 1]. This 
monotonici ty was first proved for the circular membrane under certain variable loads/ /(x)  by 
Weinitschke [45], both within the F6ppl and the simplified Reissner theory. Set z(x) := xy' + 
y, then from (2.16) 

4 x2~(x, y),  X3Z '=-X3y ' -  -~ (4.1) 

from which 

X3Z '= h(x) - xh'(x),  4 fo t2f(t' y(t)) dt (4.2) h(x) = 

is easily derived. An elementary argument then shows that z '  ~< 0 provided that Q(x) > 0 and 
[x/~(x)]' ~ > 0. In that case z and therefore o- 0 is monotone decreasing. The same argument 
goes through for the F6ppl membrane.  The resulting stability limit curves are shown in Fig. 
1. 

A special result for annular membranes,  but within the F6ppl theory only, has also been 
established in [45]. It concerns the case fi = 1 and s = 0, for which we have the representation 
theorem (3.7). It is easy to derive a formula for z = xy' + y from (3.7) which shows that z is 
monotone  decreasing for all x E [e, 1]. Hence,  the limit curves S(e) and H(e) separating the 
wrinkle-free solutions from the unstable ones are given by the condition y ' (1)  + y(1) = 0. 

It was a major  task to generalize the above results to circular and annular membranes 
under  general boundary conditions, and to remove restrictions such as (xfi)' >>- 0 or/~ = 1 in 
the above results. This has been achieved in 1990 by Grabm/iller [15] for the annular 
membrane  and in 1991 by Beck and Grabmiiller [4] for the circular membrane.  We proceed 
to outline these new results. 

We first observe that the transformation (3.4) can also be used in the case e = 0. If we let 
t := x 2 and g(t) := x2y(x), then Problem S reduces to 
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- g ( t ) = F ( t , g ) ,  O < t < l ,  g (O)=O,  g ( 1 ) = S ,  (4.3) 

where a dot denotes differentiation with respect to t in this section. F(t, g) is obtained from 
(3.5) by setting e = 0. Since F is nonnegative, any m-solution g(t) of (4.3) must be concave. 
Furthermore,  g(t) satisfies an integral equation of the form (3.8), with q(t) = St, which can 
be utilized to extend differentiability of g(t) to the end points t = 0 and t = 1. In particular, it 
can be shown that any solution of (4.3) satisfies g (0 )=  y ( 0 ) > 0  and implies the correct 
boundary condition y ' ( 0 ) =  0. 

Let gj(t) be solutions of Problem S for S = Sj, j =  1,2 with S 2 > S 1 ~ 0 ,  and let 
z(t) := gz(t) - gl(t). Then the integral representations for gj(t) can be used to prove that 
sign 2 ( t )=  sign z(t) and that z(t)>! 0 and 2 ( t )>  0 holds for all t E [0, 1]. In terms of the 
variables t and g, the circumferential stress can be written as 

i [ , ]  
~ro(t )=-~ Ek  e 2 g ( t ) - 7  g(t) , O ~ t < ~ l .  (4.4) 

It is seen that the rn-solution g(t) of Problem S for S = 0 is not wrinkle-free. Indeed, by 
concavity we have g(1) < 0 while g(1) = 0, implying or0(1 ) < 0. Consequently, a wrinkle-free 
solution must be an rt-solution satisfying g ( t ) > 0  for all rE [0 ,  1]. The function 
p(t) := 2 t g ( t ) -  g(t) obviously preserves the positivity of o- 0 except at t = 0. Let gj(t) be 
defined as above, then it follows from the monotonicity properties of z, 2 and ~ that the 
corresponding functions pj(t) satisfy the inequality 

P 2 ( t ) - p , ( t ) = t 2 ( t ) + f o r ~ ( ~ - ) d r > 0 ,  0 < t ~  < 1 .  (4.5) 

Therefore,  if g(t) is wrinkle-flee at a point (k, S), S > 0, then this property is preserved at 
any point (k, S 1) with $1 > S. As the set 

W:={(k,S): inf p(t; k, S) >10} 
0<t~l 

(4.6) 

is the domain of existence of wrinkle-flee solutions, its boundary F(k) = infs~ 0 W, k > 0 is 
well-defined. 

In order to study F(k), two maximum principles are needed. They can be proved under 
the following assumptions on the load: p(t)>t 0 (or p(t)~< 0) is measurable and bounded, 
p > 0 (or p < 0) holds on a subset of [0, 1] of positive measure, Q(t) # 0 for all t E [to, 1], 
0 < t o < 1, and (d/dt)Q2(t)  is piece-wise continuous for t ~ (0, 1), where Q(t) = fo v7 -rfi(T) dz 
[151. 

T H E O R E M  4.1. Let g(t) denote an rt-solution o f  Problem S, S > 0, then a local minimum 
p(tl)  ~< 0 cannot be attained at an interior point tl E (0, 1), unless g(1) ~< 0. 

T H E O R E M  4.2. Given k 2 > k I > 0, denote by &(t) := g(t; kj) the rn-solutions o f  Problem S 
for  S = S j >! O, j = 1, 2. Let z( t ) := gz(t) - g1( t ). Then a local maximum Z(tl) > 0 cannot be 
attained at an interior point t 1 E (0, 1). 

According to Theorem 4.1, the stress component oo(t ) of a wrinkle-flee solution g(t) cannot 
vanish at an interior point of the membrane. Thus, positivity of ~r 0 (t) is controllable via the 
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positivity of the boundary value 0(1). This generalizes a similar result derived from (4.1) and 
(4.2), under the more restrictive assumptions Q(t )> 0 and (d/dt)[t#(t)] >! O. Integral repre- 
sentations of g(t) and g(t) give rise to the formula 

2fo~ p(1) ---- p(1; k, S) = 2g(1) - S = S - -£7 R[r, g(r)l d r ,  (4.7) 

where 

R(t, g) :=  1 -  g [g2 + k2p2(t)]l/: , P(t) := 2V1 f ?  rfi(r) d r .  

R is related to F o f  (4.3) by F(t, g) = R(t, g)/(k2t). It is seen from (4.7) that p(1; k, S)---> +~  
for each fixed k > 0, as S---> +o~. Since p(1; k, 0 ) <  0, the segment [0, +~) is contained in the 
range of the mapping S ~ p ( 1 ;  k, S), for S>~0, k >0.  Hence the boundary F(k) defined 
above can be obtained from the nonempty set 

F : =  {(k, S), k>O,  S~O: O(1; k, S) = 0 } ,  (4.8) 

by applying an implicit function theorem to p(1; k, S ) =  0. At this point the continuity and 
strict monotonicity (4.5) of p(1) is used. The set (4.8) then is the graph of a uniquely defined 
function F: ~+ ~ / ~  satisfying p(1; k, F(k)) = 0 for all k > 0. The function F(k) constitutes 
the finite boundary part of W provided g(1) > 0. In view of (4.7), this condition holds for 
S/> F(k), k > O. 

Now Theorem 4.2 is applied to prove 

THEOREM 4.3. The mapping F(k) is strictly decreasing and continuous, limk_~ F(k)=  0 
and lim~__.0+ F(k) = S* > 0 exist. 

The following representation is an immediate consequence of (4.7) 

2f0, F(k) = ~ R[r, g(r)] d r ,  k > 0 ,  (4.9) 

where g(t) is the rt-solution satisfying p(1)=0.  Equation (4.9) shows that F(k)--~0 as 
k--* +oo. The limit for k--+0+ can be obtained by applying l'Hospital's rule to (4.9). The 
result is 

f0 
1 PZ(r) 

r ( o )  = s *  = d r > 0 .  (4.10) 

S* is the boundary of the F6ppl model, so that rt-solutions are wrinkle-free for S i> S*. For 
uniform load S* = 0.7292, as computed by Dickey [10]. 

It remains to consider the displacement problem. In terms of the variables t and g, the 
boundary conditions given in (2.3) and (2.16) for Problem H are 

2g(1) - (1 + v)g(1) = H :  

2g(1) - g(1) - v[g2(1) + k2p2(1)] 1/2 = H :  

F6ppl, 

simplified Reissner. 
(4.11) 
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Introducing p ( 1 ) =  0 and making use of (4.7) the domain of wrinkle-free solutions for 
Problem H is bounded by the graph of 

H(k) = - t'S* , k = O: 

H(k) = - ~ [ r 2 ( k )  + k2p2(1)] '/2 , k > O: 

F6ppl ,  

simplified Reissner.  
(4.12) 

An asymptotic form of H(k) is 0 ~  < - H ( k ) -  vP(1)k  = o(1) as k--~o% which follows from 
Theorem 4.3. The limit curves F(k) and H(k) are presented in Fig. 1 for the case of uniform 
load and u = 1/3. It is worth noting that there is a strong dependence on u. In fact, (4.12) 
shows that H(k) = 0 for all k/> 0 if v = 0. 

We now discuss the problem of wrinkle-free solutions for annular membranes, solved by 
Grabm/il ler  [15] under similar assumptions on the surface load as for the circular membrane.  
The basic boundary value problems have been formulated in equations (3.1)-(3.3) .  The 
Schwerin transformation (3.4) is used to allow the application of concavity and monotonicity 
arguments. A maximum principle is then established which shows that the positivity of go(x) 
is controllable via the values taken at the boundary x = e and x = 1. We then examine in the 
set of boundary data s~>0, S~>0 the manifolds t r0 (e )=0  and % ( 1 ) = 0  (keeping the 
parameters  k and e fixed). They determine the boundary of the domain W(s, S) of 
wrinkle-free solutions of Problem (s, S). 

In terms of the variables t = ( x  ~ -  e 2 ) / ( 1 -  e2), g(t)= w4xEy(x) we have the annular 
membrane  boundary value problems (3.5) and (3.6), replacing z by t, as above. Let  gj(t) 
denote  any two m-solutions of Problem (s t, St), j = 1, 2, and let z(t) := g2(t) - &(t ) ,  then we 
have again monotonicity z(t)>10, t ~ [0, 1], ~f(t)~ 0, t E (0, 1), provided that s 2/> s 1 t> 0 and 
S 2 ~> S 1 >t 0. Fur thermore,  2(t) ~> 0, t @ [0, 1], provided that s 2 > s I/> 0 and S 2 = S 1 i> 0. The 

function 

p(t) := to(t + y)Cro(t)(4/Ek 2) = 2(t + y )g( t )  - g(t),  (4.13) 

where 3' = e2/(1 - e2), preserves both the regularity and positivity of %,  thus 

W(s, S)  = {(s ,  S):  inf  p(t; s, S) >t O} . 
0 < t ~ l  

(4.14) 

As in the case of the circular membrane,  it is observed that an m-solution g(t) of Problem 
(s, S) is not wrinkle-free if s = S = 0. Clearly a wrinkle-free solution g(t) must satisfy g(t) > 0 
for all t E [0, 1], which follows from (4.13) noting that g ( 1 ) >  0, and that g(0)t> g(t)~> g(1) 

by concavity. 
In order  to derive monotonicity properties for p(t), the integral equation (3.8) is 

employed.  Together  with the monotonicity of z = g2 - g~, the following inequalities analog- 
ous to (4.5) are obtained for pj(t) = p(t; st, Si), j = 1, 2 

p z ( t ) - p l ( t ) = ( t + 2 y ) 2 ( t ) + f o Z 2 ( z ) d r / > 0 ,  t E [ 0 , 1 ] ,  (4.15) 

provided that s 2 = s I/> 0 and S 2 > S 1 ~ O. On the other  hand, if s 2 > s 1/> 0 and S 2 = 31 ~ O, 

then 

p 2 ( t ) -  pl(t) = 2(t + y ) 2 ( t ) -  z(t) <-0, t@ [0, 1]. (4.16) 
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Next the structure of the boundary F(s) = infsW(s, S), s/> 0, is studied under the assumption 
that p(x) is measurable and positive on e ~< x <~ 1 in the sense defined above for the circular 
membrane.  Theorem 4.1 holds for any rn-solution of Problem (s, S), S > 0  ( 0 ~  < t<~l 
represents the interval e <~ x ~< 1). Thus, positivity of % is here controlled by the boundary 
values p(0) and p(1), given from (4.13) by 

p(O) = 23,g(0) - s ,  p(1) = 2(1 + y)g(1)  - S .  (4.17) 

If both p(0; s, S) and p(1; s, S) are zero for s = sp, S = Sp, then (sp, Sp) is called a switch 
point. The integral representation for p(t), evaluated at t = 0 and t = 1, supplies two linear 
algebraic equations for calculating switch points. The result is 

fo Sp = 2y (1 + 23, + r)F[r, g(r)] d r  > O, 

fo ' Sp = 2(1 + 3') (23' + r)F[r, g(r)] d r  > O. 

(4.18) 

It can be shown that there exists exactly one switch point for any given k > 0 and e > 0. Here 
again the monotonicity of the function z(t) is crucial in the proof. It is easy to compute the 
switch point numerically. One simply solves the differential equation -~ ( t )  = F(t, g) subject 
to the boundary conditions (4.17) setting p(0) = O(1) = 0 and s = g(0), S = g(1). 

Physically, one expects wrinkling to occur if s at the inner edge is sufficiently large. On the 
other hand, no wrinkling should occur if S at the outer edge is sufficiently large. Indeed, 
from an integral representation for O(t) one can show rigorously that p(0; s, S ) - + - ~  for 
each S />0  as s---~ + %  and p(1; s, S) -+  +oo for each s I>0 as S-+ +~ .  Hence the ranges of 
the mappings s ~-+p(0; s, S) and S~--~ p(1; s, S) are such that the nonempty sets 

F i = { ( s , S ) : p ( j ; s , S ) = O } ,  ] = 0 , 1  (4.19) 

give rise, via the implicit function theorem, to a pair of uniquely defined functions 
Fol:/~+---~ ~ and FI: ~+---~ R satisfying 

p(O;Fo~(S),S)=O forS>~O and O(1;S, Fl(S))=O fors~>O.  (4.20) 

With s* : =  FOI(0) and S* := Fa(0 ), it follows that D(F0) = Range(Fo ~) = [s*, +~)  and 
Range(l-'l) = [S*, +~)  because the mapping Fol:  ~+---~ D(F0) is one-to-one and the map- 
pings F0: D(F0)---~ ~ and FI:/~+ ~ ~ are strongly increasing and continuous; furthermore, 
lims~= Fj(s) = +~ ,  j = 0, 1. 

The domain W(s, S) of wrinkle-free solutions of Problem (s, S) can now be determined. In 
view of (4.17), the condition g ( 1 ) > 0  holds for S~>F~(s) and s>~0. Thus Theorem 4.1 
applies which shows that the boundary F of W(s, S) is part of the arcs F 0 and F~. More 
precisely, we have: 

T H E O R E M  4.4. There exists a unique switch point (Sp, Sp). The parameter domain of 
wrinkle-free solutions of Problem (s, S) is the set (see Fig. 4) 

W(s, S) = {(s, S): S/> r l (s  ) for O~ s ~< sp, S >I F0(s ) for sp ~< s < ~} . 
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[S ] Proble~ (s, S) : Domains of 14rink le-Free Solot ions for elas=O, lO 
I.OO 
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Fig. 4. Wrinkle-free solutions of Problem (s, S) only exist within the dotted domains. At  the boundary curves that 
asymptotically approach the straight line S = (1 + e2)s/2 (bold dotted),  the circumferential stress cr e vanishes at one 
of the edges of  the annulus, i.e., at the outer edge on the horizontal arcs, and at the inner edge on the inclined arcs. 
The surface load is uniform, ~, = 1/3, and e = 0.1. 

Next we consider problems involving displacement data in the boundary conditions. Follow- 
ing Theorem 3.4, the images of mappings defined via the displacement boundary operators 
Bj, j = 0, 1, were seen to be the domains where rn-solutions of the respective Problems 
(s, H), (h, S) and (h, H) exist. Now it becomes obvious that the subdomain W(s, S ) C  
Ex(s, S) of wrinkle-free solutions is mapped onto a corresponding subdomain in the 
boundary-parameter ranges (s, H), (h, S) and (h, H). In particular, we are interested in 
finding the images of the arcs F0(s ) and Fl(s ). To this end we simply have to combine (4.17), 
setting p(0) and p(1) equal zero, with the displacement boundary operators Bj defined 
following (3.6). Hence, we have, with 17 := ( 1 -  e2)~/2 and 01 "= 19(1) 

2 

on F0: ho(s ) = e2g,(O) - txs = ~ s - txs = - ~ s ,  (4.21) 

I 1 = - - /TF 1 ( s ) ,  
g(1) - / zg(1)  = 2(1 + 3') S - / z S  (4.22) 

on FI: H i ( s )  = |g(1)  1 -  e 2 2 - 2 z 1/2 
2 [ g ( 1 ) +  , 

k 

for the F6ppl and simplified Reissner theory. If the boundary condition B1[g ] = H is 
rewritten in terms of F0(s ) we find 

"D1 (s) - ~ F0(s): V6ppl, 
Ho(s) ='  (4.23) 

2 2 1/2 Dl(s ) - / x F 0 ( s  ) -  ffF0(s)[(1 + ®JF0(s)) - 1]: simpl. Reissner, 

where Dl(s ) = g(1), g(t) being the solution of Problem (s, S) for S = F0(s ). 
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[$1 Problett (h,$):  Oonains of  Wrinkle-Free Solutions for  eps:O.lO and nu:O.33 
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Fig. 5. The domains  (dotted) of wrinkle-free solutions y(x) of Problem (h, S) for various k. Only minor  differences 
are found be tween the results for k = 0 (Fdppl model) and k > 0 (Reissner model). The surface load is uniform,  
v =  1/3,  and e = 0 . 1 .  

The set W(s, H) of wrinkle-free solutions of Problem (s, H) can thus be written as follows: 

W(s, H)= {(s, H): H >~ HI(s ) fo r0<-s<-s  e, H >I Ho(s ) fors  e ~ < s < ~ } .  

We note that Hl(s ) = 0 for all k if v = 0. Therefore, no wrinkle-free solution can exist for 
H < 0 .  

Changing to a parametrization with respect to S, the domain W(h, S) of wrinkle-free 
solutions of Problem (h, S) can similarly be determined. Clearly (4.21) can be written as 
ho(S ) =-~Fol(S), in (4.22) FI(S ) is simply replaced by S. The domains of wrinkle-free 
solutions of Problem (h, S) are shown in Fig. 5. In the case of Problem (h, H) the boundary 
of the corresponding domain W(h, H) decomposes into two connecting arcs which can be 
expressed via the function H o, H 1 defined in (4.22) and (4.23) and a function h~(S) defined 
for describing W(h, S); for details see [15]. 

5. Curved membranes of revolution 

We begin by discussing some recent work for shallow membranes for small finite deflections 
(F6ppl theory), obtained by Baxley [2] and Dickey [11]. The governing equation is (1.7). 
For a shallow spherical cap under normal pressure Ps = 0 = pn and z - z0(1 - r2), approxi- 
mately. Since z ' =  sin ~, this implies 1 -  cos ¢ -  2zo r2 in (1.7). Introducing dimensionless 
variables as for the circular membrane, equation (1.7) can be reduced to the form 

2 
Ly = :7 Q2( x ) -  h l ,  O < x <  1, y'(O) = 0 ,  (5.1) 

Y 
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where x = r/a, L and Q are defined in (2.1), and A 0 = (4Ea2d/Po)~/3/RV~ is a geometry-load 
parameter  proportional to the height z 0 of the spherical cap, R is the radius of the sphere. 
Applying the transformation (3.4) with t = x 2 and g( t )= xZy(x), we obtain the problem 
formulated in [2] for uniform load and fixed edge, namely Problem H for H = 0, that is 
(apart from notation) 

t 2 
g ( t ) =  - - 7  _j_ ~2 , 0 < t <  1,  

g 

g(0) = 0 ,  2 g ( 1 ) -  (1 + v ) g ( 1 ) = 0 .  
(5.2) 

It is observed in [2] that the right-hand side of the differential equation is nondecreasing in g, 
at least for tensile solutions g > 0, but that the coefficients in the boundary condition at t = 1 
do not have the right signs for a classical existence theorem to apply. However ,  it was shown 
in [17], how this difficulty can be overcome by the well-known maximum principle of Hopf. 
Hence,  applying the technique of [17], the uniqueness of positive solutions of the boundary 
value problem (5.2) follows, even for variable load and more generally for Problem S and 
Problem H,  in our terminology. In order  to prove existence, Baxley substitutes u = 1/t, 
reduces (5.2) to a boundary value problem on 1 ~< u < ~, and applies an existence theorem 
valid for problems of the type 

w"(u)  = f ( u ,  w ,  w ' )  , a ~ u < ~ , 

aow(a ) - alw'(a ) = A ,  a o > O, a I >~ O, 

where f must satisfy a number  of smoothness and monotonicity conditions. We summarize 
the results as 

T H E O R E M  5.1 (Baxley). Suppose (1 + v ) / 2 <  p < 1, then Problem (5.2) has at most one 
solution satisfying g( t ) / t°---~ 0 as t---~ 0+. A positive solution g( t ) exists for all )t, which has the 
properties 

g(t) < 1 g(t) decreasing, (5.3) - - 7  2---~ ' g(t) ~ ott( /3 - t ) ,  t 

for 0 <  t ~  < 1 and some constants a > 0 ,  /3 > 1. Furthermore, l im(g( t ) / t )  exists for t---~O+. 

It appears that the existence part of the theorem can also be proved by transforming (5.2) 
into an integral equation and applying Schauder's fixed point theorem. Indeed,  this is the 
technique employed by Dickey [11] in his work on shallow shells for surfaces generated by 
rotating the curve 

((a) z =  z ( r ) =  C 1 -  O<~r<<_a , (5.4) 

for  a constant C > 0 and a shape factor y > 1. The case y = 2 and C sufficiently small 
corresponds to the spherical cap (5.1). Given the radial stress or the radial displacement at 
the edge r = a, we obtain Problems S and H in the dimensionless form 
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2 1 (4EC2"y3d) ~/3 
Ly  = --y aZ(x) - )t2xey-4 , )t o = ~ Poa4 , 

y ' ( 0 ) = 0 ,  y ( 1 ) = S  or y ' ( 1 ) + ( 1 - v ) y ( 1 ) = H .  
(5.5) 

The technique of solving (5.5) employed in [11] is quite similar to the case )t0 = 0, as 
discussed in detail in Section 2. The boundary value problem is transformed into an integral 
equation of type y = Ty, then the operator T is shown to have properties such that the 
Schauder fixed point theorem can be applied. The result is, proved in [11] for Q = 1 (uniform 
load): 

T H E O R E M  5.2 (Dickey). Set D = )t0z4-5/3/[y(T- 1)] and assume y > 1, S > D. Then 
Problem S has a solution y(x),  which is positive for x ~ [0, 1]. 

Although uniqueness is not discussed in [11], it is obvious that a standard uniqueness 
argument applies to (5.5) for any S > 0, so that positive solutions of Problem S are unique. 
Problem H, H = 0, is solved by interpolation as in [10], showing that u(a) changes sign for 
solutions of Problem S in a range of S covered by Theorem 5.2. In addition, D must be 
sufficiently small. The result is, again for Q = 1: 

T H E O R E M  5.3 (Dickey). Assume y > 1 and D is sufficiently small, then Problem H, for 
H = O, has a positive solution y(x).  

In the special case 3 ,=2 ,  Theorem 5.1 shows that a smallness assumption on D is 
unnecessary. However,  it is proved in [11] that if y = 4/3,  Problem H for H = 0 has no 
positive solution unless D is sufficiently small. This particular case is amenable to a phase 
plane analysis, from which the following conclusions are drawn in [11]. If ) t 2 ~  (64/3)1/3, 
where )t 2 = c)t~, then Problem S has a unique rt-solution y(x) for all S > 0, and Problem H 
has a unique rt-solution y(x) for all H. If )t2> (64/3) 1/3 then Problem S has no tensile 
solution unless S > So, and Problem H has no rt-solution unless H > H 0 where S O and H 0 are 
positive numbers. In particular, there is no (rotationally symmetric) solution of Problem H 
for H = 0 in the case y = 4/3 and )t2 > (64/3)1/3. 

Finally, we present some work from the Thesis of J. Arango [1], which concerns 
deformation of curved membranes with finite rotations under uniform normal pressure 
p ,  = q. The basic equation is (1.6), where Ps = 0. From equations (1.4) we have PH-- 
q sin ¢ ,  which means that V in (1.6) is not a given quantity, but rather depends on the 
solution ¢ .  In fact, equilibrium in the z-direction implies 

d(rV) d(rV) 
d-----~ + rpv = O -  ds r(s)q cos ¢ .  (5.6) 

Following the notation in Clark et al. [8], we substitute 

M = rS4, cos ~ ,  N = rS4, sin • ,  H = rS o , (5.7) 

where $6 and S o are pseudo stress resultants which measure the tension in the deformed 
membrane per unit length of the undeformed membrane. Then the basic equations (1.6) and 
(5.6) can also be written as an equivalent first order system of two equilibrium equations and 
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one compatibil i ty equation [8] 

d M  d N  2 
r -~s H + r 2 q s i n ~ P = O '  r--~s - r q c ° s a P = O '  

dH  
r ~s  M - Edr(cos ap - cos ~o) = O. 

(5.8) 

Assuming 0 < s ~< L,  tensile solutions must satisfy S,  (s) > 0 for 0 < s ~< L. In addition, 
rotat ions are restricted to 0 ~< qb(s) < 7r/2, so that M > 0 and N > 0 for 0 < s ~< L. For 
wrinkle-free solutions we also have H / >  0. Observing the relations 

COS qb = M / ( M  2 + N2) 1/2 ' sin (I) = N / ( M  2 + N 2 )  1/2 , 

the system (5.8) can be re-written in the dimensionless form 

x'(t) = z(t) /p(t)  - p( t )y( t ) /Q(x ,  y) , 

y ' ( t ) = p ( t ) x ( t ) / Q ( x ,  y ) ,  0 < t < l ,  

z'(t)  = x(t) /p(t)  + e [ -p ' ( t )  + x( t ) /Q(x ,  y) ] ,  

(5.9) 

where t = s /L ,  p = r/L,  (x, y, z) = (M, N, H)/(L2q) ,  Q(x, y) = (x 2 + y2)1/2 and e = Ed/qL.  
If  the membrane  is closed at the apex, one has p(0) = 0 and p ' (0 )  = 1. Any regular solution 
of (5.9) must satisfy x(0) = y(0) = z(0) = 0. If  the membrane  has a circular inner edge at 
r = r 0 > 0, then p(t) > 0 for 0 ~< t ~< 1 and x(0),  y(0) or x(0),  z(0) can be prescribed at the 
inner edge. In both cases the geometry  is restricted by the assumption p'(t) > 0 for 0 ~< t ~< 1. 
At  the outer  edge, a boundary  condition 

B(x(1) ,  y(1) ,  z(1)) = m (5.10) 

is imposed,  where B: ~ 3___> Zq is a given function and m is a given number.  The problem is 
then to find sufficient conditions on the boundary conditions, for certain physically meaning- 
ful B, such that equations (5.9), (5.10) have a tensile solution, and also to formulate  
conditions for uniqueness, and for wrinkle-free solutions. 

The method  of proof  in [1] is essentially the shooting method.  A set of admissible solutions 
X(t ,  r) = (x(t, r), y(t, r), z(t, r)), 0 ~< t ~< 1, is introduced that satisfy the conditions at t = 0 
stated above and the differential equations (5.9), and that depend on a shooting pa ramete r  r. 
The  existence of solutions of (5.9) and (5.10) is then equivalent with the existence of zeros 
of  the shooting function 

F(r)  := B(X(1,  r)) - m .  

Unde r  appropr ia te  assumptions on F(r) there is a unique zero which yields uniqueness of  the 
solution of the boundary value problem. It  is clear that one of the main difficulties is to 
establish the existence of admissible solutions X(t,  r) in the interval 0 ~< t ~< 1. Fortunately,  
the nonlinear nonnegative terms x / Q  and y / Q  in (5.9) are bounded by unity. This fact, 
together  with some monotonici ty propert ies  of the solutions X(t,  r), allows one to extend the 
local existence of X(t,  r) near  t = 0, which is guaranteed by classical theory,  to a global 
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existence in the whole interval 0 ~ t ~< I. The details are quite involved and cannot  be 
discussed here.  Some representative results of [1] for a membrane of revolution closed at the 
apex are contained in the next two theorems. In analogy to flat and shallow membranes two 
boundary  value problems are defined by prescribing the radial stress or the radial displace- 

ment  at the boundary t = 1 (see (5.7)) 

Problem S: 

Problem H: 

B ( x )  = x ( 1 ) ,  

B(X) = z ( 1 )  - v[x2(1) + y2(1)1~/2. 
(5.11) 

Let  

fl t 1 ~ ( t )  = - ~ - ~  d r ,  p ' ( t )=  l -  t~)(t) , t > O ,  

then the assumptions on p(t) imply that t5 > 0, t~ > 0 for 0 < t ~< 1. 

T H E O R E M  5.4 (Arango). Problem S has a tensile solution for all m > 0 satisfying 

fo m > m 0 := e ~(t)t  sinh(t~(t)) dt > 0 .  

Problem H has a tensile solution for all m > 0 satisfying 

ml--sup(e f0' . , ,  cos.(t,, d, fo 

These solutions of  Problems S and H are unique if 

l + ( p ' ( t ) )  2 + p ( t ) p ' ( t ) 9 0 ,  0 ~  < t ~  < 1 .  (5.12) 

The  conditions m > m 0 and m > m I are perhaps overly restrictive. On the other hand, 
The o r e m 5.4 is valid for quite arbitrary membranes of revolution. The results of Dickey 
show that some particular geometries do require restrictions on m, excluding m = 0 in 
Problem H. The above results simplify considerably for the circular membrane problem 
under  normal pressure, which in the Reissner theory of finite rotations is different from the 
corresponding problem under vertical pressure. 

T H E O R E M  5.5 (Arango). In the case of  a circular membrane p'(t)=-1, Problem S has a 
unique tensile solution for all m >! O. Problem H has a unique tensile solution for all m >! 1/2. 

While the result for Problem S is best possible, Problem H for a fixed edge (m = 0) is not 
covered by Theorem 5.5. 

Existence and uniqueness results for membranes of revolutions with a circular opening 
have also been obtained in [1]. Depending on which boundary data are prescribed at t = 0 
and t = 1, there results a variety of boundary value problems. As an example, we briefly 
discuss results corresponding to Problems (s, S) and (s, H)  defined in Section 3. Suppose 

2 + y~ > 0, then one has x 0 >/0, Y0 ~> 0 are such that x 0 
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THEOREM 5.6 (Arango). Let B ( X )  = x(1) and m >~ O. Then the boundary value problem 
(5.9), (5.10) has a tensile solution. This solution is unique, i f  p(t) satisfies (5.12). Let B ( X )  be 
defined as in (5.11), Problem H, and m >I pZ(1), then (5.9), (5.10) has at least one tensile 
solution. 

In the case of a flat annular membrane p(t) = t, the condition m/> p2(1) can be improved to 
m>~l /3 .  

The above conditions do not cover the whole range of physically meaningful boundary 
data. Separation curves, as in Section 3, separating exactly the domains of existence and 
nonexistence of tensile solutions or establishing the domain of wrinkle-free solutions for the 
various boundary value problems have yet to be found. For the circular and annular 
membrane it is known that S o (t) i> 0 can be controlled by the boundary data as in Section 4. 
The following result was proved in [1]: An admissible solution of equations (5.9) is 
wrinkle-free if and only if z(0) i> 0 and z(1)/> 0. 

The problem of curved membranes under variable vertical load has apparently not been 
investigated as yet (see a forthcoming thesis by A. Beck). In closing, we would also like to 
stress that the results of Sections 2-4 concerning finite rotation problems have all been 
derived under the simplifying assumption that the term vrp, in (1.6) is ignored. It remains to 
be seen whether the qualitative results concerning existence, uniqueness and wrinkle-free 
solutions change significantly if that term is included in the analysis. Numerical calculations 
in [45] show that quantitative differences are not negligible for larger values of k. 
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